45 research outputs found

    Power-law dependence of the angular momentum transition fields in few-electron quantum dots

    Full text link
    We show that the critical magnetic fields at which a few-electron quantum dot undergoes transitions between successive values of its angular momentum (M), for large M values follow a very simple power-law dependence on the effective inter-electron interaction strength. We obtain this power law analytically from a quasi-classical treatment and demonstrate its nearly-universal validity by comparison with the results of exact diagonalization.Comment: Uses RevTeX4, 6 figures included in the tex

    Correlation between electrons and vortices in quantum dots

    Full text link
    Exact many-body wave functions for quantum dots containing up to four interacting electrons are computed and we investigated the distribution of the wave function nodes, also called vortices. For this purpose, we evaluate the reduced wave function by fixing the positions of all but one electron and determine the locations of its zeros. We find that the zeros are strongly correlated with respect to each other and with respect to the position of the electrons and formulate rules describing their distribution. No multiple zeros are found, i.e. vortices with vorticity larger than one. Our exact calculations are compared to results extracted from the recently proposed rotating electron molecule (REM) wave functions

    Accuracy of the Hartree-Fock method for Wigner molecules at high magnetic fields

    Full text link
    Few-electron systems confined in two-dimensional parabolic quantum dots at high magnetic fields are studied by the Hartree-Fock (HF) and exact diagonalization methods. A generalized multicenter Gaussian basis is proposed in the HF method. A comparison of the HF and exact results allows us to discuss the relevance of the symmetry of the charge density distribution for the accuracy of the HF method. It is shown that the energy estimates obtained with the broken-symmetry HF wave functions become exact in the infinite magnetic-field limit. In this limit the charge density of the broken-symmetry solution can be identified with the classical charge distribution.Comment: to appear in EPJ

    Configurational entropy of Wigner crystals

    Get PDF
    We present a theoretical study of classical Wigner crystals in two- and three-dimensional isotropic parabolic traps aiming at understanding and quantifying the configurational uncertainty due to the presence of multiple stable configurations. Strongly interacting systems of classical charged particles confined in traps are known to form regular structures. The number of distinct arrangements grows very rapidly with the number of particles, many of these arrangements have quite low occurrence probabilities and often the lowest-energy structure is not the most probable one. We perform numerical simulations on systems containing up to 100 particles interacting through Coulomb and Yukawa forces, and show that the total number of metastable configurations is not a well defined and representative quantity. Instead, we propose to rely on the configurational entropy as a robust and objective measure of uncertainty. The configurational entropy can be understood as the logarithm of the effective number of states; it is insensitive to the presence of overlooked low-probability states and can be reliably determined even within a limited time of a simulation or an experiment.Comment: 12 pages, 8 figures. This is an author-created, un-copyedited version of an article accepted for publication in J. Phys.: Condens. Matter. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher-authenticated version is available online at 10.1088/0953-8984/23/7/075302.

    Topological defect motifs in two-dimensional Coulomb clusters

    Get PDF
    The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferation of defects in metastable configurations destroys the orientational order of the Wigner lattice.Comment: 14 pages, 8 figures. This is an author-created, un-copyedited version of an article accepted for publication in J. Phys.: Condens. Matter. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher-authenticated version is available online at 10.1088/0953-8984/23/38/38530

    Currents in a many-particle parabolic quantum dot under a strong magnetic field

    Full text link
    Currents in a few-electron parabolic quantum dot placed into a perpendicular magnetic field are considered. We show that traditional ways of investigating the Wigner crystallization by studying the charge density correlation function can be supplemented by the examination of the density-current correlator. However, care must be exercised when constructing the correct projection of the multi-dimensional wave function space. The interplay between the magnetic field and Euler-liquid-like behavior of the electron liquid gives rise to persistent and local currents in quantum dots. We demonstrate these phenomena by collating a quasi-classical theory valid in high magnetic fields and an exact numerical solution of the many-body problem.Comment: Uses RevTeX4, figures included in the tex

    Measuring topology in a laser-coupled honeycomb lattice: From Chern insulators to topological semi-metals

    Get PDF
    Ultracold fermions trapped in a honeycomb optical lattice constitute a versatile setup to experimentally realize the Haldane model [Phys. Rev. Lett. 61, 2015 (1988)]. In this system, a non-uniform synthetic magnetic flux can be engineered through laser-induced methods, explicitly breaking time-reversal symmetry. This potentially opens a bulk gap in the energy spectrum, which is associated with a non-trivial topological order, i.e., a non-zero Chern number. In this work, we consider the possibility of producing and identifying such a robust Chern insulator in the laser-coupled honeycomb lattice. We explore a large parameter space spanned by experimentally controllable parameters and obtain a variety of phase diagrams, clearly identifying the accessible topologically non-trivial regimes. We discuss the signatures of Chern insulators in cold-atom systems, considering available detection methods. We also highlight the existence of topological semi-metals in this system, which are gapless phases characterized by non-zero winding numbers, not present in Haldane's original model.Comment: 30 pages, 12 figures, 4 Appendice

    The two electron artificial molecule

    Full text link
    Exact results for the classical and quantum system of two vertically coupled two-dimensional single electron quantum dots are obtained as a function of the interatomic distance (d) and with perpendicular magnetic field. The classical system exhibits a second order structural transition as a function of d which is smeared out and shifted to lower d values in the quantum case. The spin-singlet - spin-triplet oscillations are shifted to larger magnetic fields with increasing d and are quenched for a sufficiently large interatomic distance.Comment: 4 pages, 4 ps figure
    corecore